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ABSTRACT
This paper presents a new methodology for automatic knowl-
edge driven data mining based on the theory of Mercer Ker-
nels, which are highly nonlinear symmetric positive definite
mappings from the original image space to a very high,
possibly infinite dimensional feature space. We describe
a new method called Mixture Density Mercer Kernels to
learn kernel function directly from data, rather than using
pre-defined kernels. These data adaptive kernels can en-
code prior knowledge in the kernel using a Bayesian formu-
lation, thus allowing for physical information to be encoded
in the model. We compare the results with existing algo-
rithms on data from the Sloan Digital Sky Survey (SDSS).
The code for these experiments has been generated with
the AutoBayes tool, which automatically generates effi-
cient and documented C/C++ code from abstract statisti-
cal model specifications. The core of the system is a schema
library which contains templates for learning and knowl-
edge discovery algorithms like different versions of EM, or
numeric optimization methods like conjugate gradient meth-
ods. The template instantiation is supported by symbolic-
algebraic computations, which allows AutoBayes to find
closed-form solutions and, where possible, to integrate them
into the code. The results show that the Mixture Density
Mercer Kernel described here outperforms tree-based clas-
sification in distinguishing high-redshift galaxies from low-
redshift galaxies by approximately 16% on test data, bagged
trees by approximately 7%, and bagged trees built on a much
larger sample of data by approximately 2%.

Categories and Subject Descriptors
D.2.m [Software Engineering]: Miscellaneous—Rapid Pro-
totyping ; G.3 [Probability and Statistics]; H.2.8 [Data-
base Management]: Database Applications—Data min-
ing, Scientific databases; I.1.3 [Symbolic and Algebraic
Manipulation]: Languages and Systems—Special purpose
algebraic systems; I.2.2 [Artificial Intelligence]: Auto-

matic Programming—Program synthesis; I.2.6 [Artificial
Intelligence]: Learning—Parameter learning ; I.5.1 [Pattern
Recognition]: Models—Statistical ; I.5.3 [Pattern Recog-
nition]: Clustering—Algorithms; J.2 [Physical Sciences
and Engineering]: Astronomy

General Terms
Bayesian Statistics, Mercer Kernels

1. INTRODUCTION
There is a growing interest in the machine learning and data
mining communities in the field of Mercer Kernels due to
their mathematical properties as well as their use in Sup-
port Vector Classifiers and Regressors. The theory of Mer-
cer Kernels allows data which may be embedded in a vector
space, such as spectral lines, physical measurements, stock
market indices, or may not arise from a vector space, such
as sequences, graphs, and trees to be treated using simi-
lar mathematics. Work by Haussler [13] shows how to map
sequences of symbols into a feature space using kernel sim-
ilarity measures. In the same paper, Haussler introduced
the idea of a Probabilistic Kernel function, or P-Kernel that
obeys Mercer’s conditions (i.e., the kernel function must be
symmetric and positive definite) and is defined as follows:

K(xi,xj) = P (xi|Θ)P (xj |Θ) (1)

This kernel function says that two points are similar if they
are both more likely given the model Θ. Thus, data points
lying in Rn which may be far away from each other in the
Euclidean sense may turn out to be ’similar’ as measured
by this kernel. We generalize this notion of similarity using
Mixture Density Mercer Kernels.

In a recent paper [18], the notion of Mixture Density Mercer
Kernels was introduced. The idea is to express the distribu-
tion function P (xi) in terms of a full Bayesian formulation of
a density function. The kernel function is created by taking
bootstrap aggregate samples models based on the distribu-
tion function. Thus, for one bootstrap sample, we have:

P (xi|Θ) =

C
∑

c=1

P (c)P (xi|θc) (2)

Due to the Bayesian formulation, prior distributions can be
placed on the model parameters for each bootstrap sample.
This allows us to encode domain knowledge into each model.



The kernel function is then composed of the sum of the outer
products of the class membership matrices. Thus, we have:

K(xi,xj) = ΦT (xi)Φ(xj)

=
1

M

M
∑

m=1

Cm
∑

cm=1

Pm(cm|xi)Pm(cm|xj) (3)

where K represents the a sum of M bootstrap samples.
Φ(xi) is a composite class membership function, where each
member of the composite is the posterior class distribution
for a model. Thus, for M models, we have:

Φ(xi) ∝ [P1(c = 1|xi), P1(c = 2|xi), . . . ,

P1(c = C|xi), P2(c = 1|xi), . . . , PM (c = C|xi)]

In the hard clustering case, where the posterior class distri-
bution for a given model is a zero-one vector, the (i, j) ele-
ment of the Mixture Density Mercer Kernel describes how
many times, on average, the M models agreed that data
points xi and xj arose from the same mode in the density
function.

As is the case with ensemble methods, the greater the vari-
ability in these models, the better the performance of the
overall model. We demonstrate the degree of variability in
the models due to different initial conditions in terms of
variations in the converged likelihood value. This paper elu-
cidates the idea and demonstrates its feasibility in working
with a large astronomical data set known as the Sloan Dig-
ital Sky Survey.

The information required to construct the kernel function
(i.e., the class membership matrix) can be computed by an
application of the EM-algorithm [9] on a suitable training
set. A number of EM-implementations is available (e.g., Au-
toclass [6, 7], EMMIX [15], MCLUST [11]) and any of them
could be used. However, in order to insert domain knowl-
edge into the kernel matrix, the EM-code has to be modified
accordingly; this is time-consuming and error-prone. More-
over, since the choice of a particular prior has consequences
for the quality of the kernel matrix, a certain amount of ex-
perimentation is necessary. However, the exact form of the
prior can also have substantial consequences on the details
of the implementation (e.g., the form of the M-step or the
internal data structures) which magnifies the implementa-
tion problem. Fortunately, the overall structure of the algo-
rithm remains the same and the details can be derived me-
chanically. Here, we have applied AutoBayes to produce
the different variants of the EM-algorithm. AutoBayes

[5, 10, 12] is a fully automatic program synthesis system
that generates efficient and documented C/C++ code from
abstract statistical model specifications. The core of the
system is a schema library which contains templates for
learning and knowledge discovery algorithms like different
versions of EM, and numerical optimization methods. The
template instantiation is supported by symbolic-algebraic
computations, which allows AutoBayes to find closed-form
solutions and, where possible, to integrate them into the
code from the templates.

2. NOTATION
• D is the dimension of the data

• N is the number of data points xi drawn from a D
dimensional space

• M is the number of probabilistic models used in gen-
erating the kernel function.

• C is the number of mixture components in each prob-
abilistic model. In principle one can use a different
number of mixture components in each model. How-
ever, here we choose a fixed number for simplicity.

• xi is a p × 1 dimensional real column vector that rep-
resents the data sampled from a data set X .

• Φ(x) : Rp 7→ F is generally a nonlinear mapping to
a high, possibly infinite dimensional, feature space F .
This mapping operator may be explicitly defined or
may be implicitly defined via a kernel function.

• K(xi,xj) = Φ(xi)Φ
T (xj) ∈ R is the kernel function

that measures the similarity between data points xi

and xj . If K is a Mercer kernel, it can be written as
the outer product of the map Φ. As i and j sweep
through the N data points, it generates an N ×N ker-
nel matrix.

• ρc is the mixture weight for the c th mixture, and q(i, c)
is the posterior probability of class membership, i.e.,
q(i, c) = P (c|xi)

• Θ = (ρ, µ, σ) is the entire set of parameters that spec-
ify a mixture model.

3. MIXTURE DENSITY MERCER KERNELS
The Mixture Density Mercer Kernel function given in (3)
is similar to the Cluster-based Similarity Partitioning Algo-
rithm (CSPA) discussed in [1]. While their implementation
uses hard clustering, it can be extended to the soft clus-
tering (expectation-maximization) approach described here.
An important difference between this work and previous
work, however, is that we intend to use our kernel function
in support vector machines for classification and regression.
The modularity of SVMs allow different kernels to be imple-
mented that model the underlying data generating process
in different ways.

The Mixture Density Mercer Kernel is built using an en-
semble of Bayesian mixture density models. The Bayesian
formulation allows for prior information to be encoded in the
model. Then, rather than computing a maximum-likelihood
estimator, we compute a maximum a posteriori estimator
which includes the likelihood function and the prior. The
greater the heterogeneity of the models used in generat-
ing the kernel, the more effective the procedure. In the
AutoBayes implementation of the procedure, the training
data is sampled M times with replacement. These overlap-
ping data sets, combined with random initial conditions for



the EM algorithm, aid in generating a heterogenous ensem-
ble.

In this work, we assume a Gaussian distribution as the model
for each class, with priors expressed in terms of a conjugate
prior for the Gaussian distribution. A conjugate prior is
defined as a family F of probability density functions such
that for every f ∈ F , the posterior f(Θ|x) also belongs to
F .

For a mixture of Gaussians model, priors can be set as fol-
lows [3]. For priors on the means, either a uniform distribu-
tion or a Gaussian distribution can be used. For priors on
the covariance matrices, the Wishart density can be used:

P (Σi|α, β,J) ∝ |Σ−1
i | β

2 exp(−αtr(Σ−1
i J)/2). For priors on

the mixture weights, a Dirichlet distribution can be used:
P (pi|γ) ∝ ∏C

c=1 pγi−1
i , where pi ≡ P (c = i). Maximum a

posteriori estimation is performed by taking the log of the
posterior likelihood of each data point xi given the model
Θ. The following function is thus optimized using the Ex-
pectation Maximization [8] for a Gaussian mixture model
with priors on the means only.

For example, the log posterior probability

log(P(µ, x | c, σ2) × P(c | ρ))

for a model with conjugate priors on the means is thus com-
puted as follows. The first step is to marginalize (i.e., sum
out) the latent variable c via the expectation q. However,
to keep this step tractable, it is important to delay the ac-
tual summation as long as possible. We thus introduce the
“delayed summation” operator

∑i=1...N

dom ci∼qi
which gives us

∑i=1...N

dom ci∼qi

log P(µ, x | c, σ2) +
∑i=1...N

dom ci∼qi

log P(c | ρ)

We can then apply the product rule to decompose the proba-
bilities and then replace them by the density functions. This
gives us the formidably looking log-likelihood function

∑i=1...N

dom ci∼qi

log

(

D
∏

j=1

C
∏

k=1

exp

(

−
1

2
(µj,k−αj,k)2

(
√

σ2

j,k
βj,k)2

)

√
2π
√

σ2
j,kβj,k

×
D
∏

j=1

N
∏

k=1

exp

(

−
1

2
(xj,k−µj,ck

)2

√

σ2

j,ck

2

)

√
2π
√

σ2
j,ck

)

+
∑i=1...N

dom ci∼qi

log
N
∏

j=1

ρcj

Now we can actually execute the delayed summations; the
crucial step is to replace all occurrences of the latent vari-
able inside the body of the

∑i=1...N

dom ci∼qi
by appropriately re-

indexed and weighted occurences. For example, this step
simplifies

∑i=1...N

dom ci∼qi
log
∏N

j=1 ρcj into
∑N

i=1 log
∏N

j=1 qj,iρci .
After further simplifications, we then get the more tractable

form:

−(
1

2
CD log 2π + DN log 2π +

D
∑

i=1

C
∑

j=1

log βi,j

+
D
∑

i=1

C
∑

j=1

log σ2
i,j +

D
∑

i=1

C
∑

j=1

(µi,j − αi,j)
2

β2
i,jσ

2
i,j

+

N
∑

i=1

C
∑

j=1

qi,j

D
∑

k=1

(xk,i − µk,j)
2

σ2
k,j

+

C
∑

i=1

D
∑

j=1

log σ2
j,i

N
∑

j=1

qj,i)

+
C
∑

i=1

log ρi

N
∑

j=1

qj,i

After dropping the terms in the first line (which are indepen-
dent of the goal variables), and introducing the Lagrange-
multiplier λ we get the following final form of the log-likelihood
function.

−(
D
∑

i=1

C
∑

j=1

log σ2
i,j +

D
∑

i=1

C
∑

j=1

(µi,j − αi,j)
2

β2
i,jσ

2
i,j

+
N
∑

i=1

C
∑

j=1

qi,j

D
∑

k=1

(xk,i − µk,j)
2

σ2
k,j

+
C
∑

i=1

D
∑

j=1

log σ2
j,i

N
∑

j=1

qj,i)

+λ
C
∑

i=1

log ρi +
C
∑

i=1

log ρi

N
∑

j=1

qj,i

This rather onerous derivation of the likelihood function (in-
cluding the LATEX-code for the displayed formulae!) was gen-
erated fully automatically by AutoBayes. It is important
to note that although this likelihood function is much more
complicated than the likelihood function for a model with
no priors, it does not change the underlying parametric sta-
tistical description of the data. Thus, the slightly increased
computational burden is only seen at the model building
stage, but not at the model evaluation stage.

The art of choosing priors is one of much study in Bayesian
data analysis. As will be seen later in this work, we choose
priors based on human knowledge about the domain prob-
lem as well as from various visualizations of the data that
indicate where modes should be placed. In the problem of
classifying low and high redshift galaxies, we only include
priors on the means of the Gaussians, rather than on the
mixture weights or the covariance matrices.

4. AUTOBAYES
AutoBayes is a fully automatic program synthesis system
for the data analysis domain. It is implemented in Pro-
log and comprises about 80,000 lines of documented code.
From the outside, it looks similar to a compiler: it takes
an abstract problem specification in the form of a statisti-
cal model and translates it into executable code. On the
inside, however, it works quite different: AutoBayes first
derives a customized algorithm implementing the model and
then transforms it into optimized C/C++ code implement-
ing the algorithm. The algorithm derivation or synthesis
process—which distinguishes AutoBayes from traditional
compilers—relies on the intricate interplay of three key tech-
niques. (i) AutoBayes uses Bayesian networks (BNs) [4,
17] as a compact internal representation of the statistical



model mog as ’Multivariate Mixture of Gaussians’;

const int D := 5 as ’number of bands’
const int N as ’number of data points’

with 1 < N;
const int C as ’number of classes’

with 1 < C;
with C << N;

double phi(1..C) as ’class probabilities’
with 1 = sum(_i := 1..C, phi(_i));

double mu(1..D, 1..C);
double sigma(1..D, 1..C);

output int c(1..N) as ’latent variable’;

c(_) ~ discrete(phi);

data double x(1..D, 1..N);
x(_i,_j) ~ gauss(mu(_i,c(_j)), sigma(_i,c(_j)));

max pr(x | {phi, mu, sigma}) wrt {phi, mu, sigma};

Figure 1: AutoBayes-specification for Gaussian mix-
ture model. Keywords are underlined.

models. BNs provide an efficient encoding of the joint prob-
ability distribution over all variables and thus enable replac-
ing expensive probabilistic reasoning by faster graphical rea-
soning. In particular, they speed up the decomposition of a
problem into statistically independent simpler subproblems.
(ii) AutoBayes uses program schemas as the basic build-
ing blocks for the algorithm derivation. Schemas consist of a
parameterized code fragment or template and a set of con-
straints which are formulated as conditions on BNs. The
templates can encapsulate advanced algorithms and data
structures, which lifts the abstraction level of the algorithm
derivation. The constraints allow the network structure to
guide the application of the schemas, which prevents a com-
binatorial explosion of the search space. (iii) AutoBayes

contains a specialized symbolic subsystem which can find
closed-form solutions for many problems and emerging sub-
problems. The combination of these techniques results in a
fast synthesis process which compares in speed to the com-
pilation of the synthesized code.

Specification Language. A statistical model describes the
properties of the data in a fully declarative fashion: for each
problem variable of interest (i.e., observation or parame-
ter), properties and dependencies are specified via proba-
bility distributions and constraints. Figure 1 shows how
the standard Gaussian mixture model with diagonal covari-
ance matrices can be represented in AutoBayes’s specifi-
cation language. The model assumes that the data consists
of N points in D dimensions such that each point belongs
to one of C classes; the first few lines of the specification
just declare these symbolic constants and specify the con-
straints on them. However, instead of drawing each point
x(1..C, j) (where .. corresponds to Matlab’s : subrange
operator, and i, j are index variables) from a multivari-
ate Gaussian c( j) with a full D×D-dimensional covariance
matrix, each band i is drawn independently from a univari-
ate Gaussian with mean mu( i,c( j)) and standard devia-
tion sigma( i,c( j)). The unknown distribution parame-
ters can be different for each class and each band; hence, we
declare them as matrices. The unknown assignment of the
points to the distributions (i.e., classes) is represented by the
latent variable c; since we are interested in the classification

results as well (and not only the distribution parameters),
c is declared as output. c is distributed as a discrete distri-
bution with the relative class frequencies given by the also
unknown vector phi. Since each point must belong to a
class, the sum of the probabilities must be equal to one.
Finally, we specify the goal inference task, maximizing the
conditional probability pr(x | {phi, mu, sigma}) with re-
spect to the parameters of interest, phi, mu, and sigma. This
means that we are interested in a maximum likelihood esti-
mate (MLE) of the model parameters; maximum aposteriori
estimates (MAP) can be specified by adding priors to the
model. Note that the model is completely declarative and
does not require the user to prescibe any algorithmic aspects
of the estimation program. AutoBayes is thus free to select
any clustering algorithm that is applicable; however, users
can force the derivation of specific solutions (e.g. k-means
instead of EM) via command line parameters.

Bayesian Networks. A Bayesian network is a directed,
acyclic graph whose nodes represent random variables and
whose edges define probabilistic dependencies between the
random variables. AutoBayes uses hybrid BNs with plates
[4] to represent the statistical models internally. Hence,
nodes can represent discrete as well as continuous random
variables. Plates generalize the concept of independent and
identically distributed (i.i.d.) random variables and “col-
lapse” collections of independent, co-indexed random vari-
ables into graph nodes representing the non-repeated core
structure; this keeps the graphs compact and the graphical
reasoning routines (e.g., computing the parents, children, or
Markov blanket [17] of a node) fast. Distribution and di-
mension information for the random variables is attached to
the respective nodes and plates.

Program Schemas. A schema consists of a parameterized
code fragment (i.e., template) and a set of constraints. The
parameters are instantiated by AutoBayes, either directly
or by calling itself recursively with a modified problem. The
constraints determine whether a schema is applicable and
how the parameters can be instantiated. Constraints are for-
mulated as conditions on the Bayesian network or directly on
the specified model; they include the maximization goal as
special case. This allows the network structure to guide the
application of the schemas and thus to constrain combinato-
rial explosion of the search space, even if a large number of
schemas is available. Schemas are implemented as Prolog-
clauses and search control is thus simply relegated to the
Prolog-interpreter: schemas are tried in their textual order.
This simple approach has not caused problems so far, mainly
because the domain admits a natural layering which can be
used to organize the schema library. The top layer comprises
network decomposition schemas which try to break down the
network into independent subnets, based on independence
theorems for Bayesian networks. These are domain-specific
divide-and-conquer schemas: the emerging subnets are fed
back into the synthesis process and the resulting programs
are composed to achieve a program for the original prob-
lem. AutoBayes is thus able to automatically synthesize
larger programs by composition of different schemas. The
next layer comprises more localized decomposition schemas
which work on products of i.i.d. variables. Their applica-
tion is also guided by the network structure but they re-
quire more substantial symbolic computations. The core



layer of the library contains statistical algorithm schemas as
for example expectation maximization (EM) [9, 14] and k-
Means (i.e., nearest neighbor clustering); these generate the
skeleton of the program. The final layer contains standard
numeric optimization methods as for example the Nelder-
Mead simplex method or different conjugate gradient meth-
ods. These are applied after the statistical problem has been
transformed into an ordinary numeric optimization problem
and if AutoBayes failed to find a symbolic solution for
the problem. Currently, the library contains 28 top-level
schemas, with a number of additional variations (e.g., dif-
ferent initializations).

Symbolic Subsystem. AutoBayes relies significantly on
symbolic computations to support schema instantiation and
code optimization. The core part of the symbolic subsys-
tem implements symbolic-algebraic computations, similar to
those in Mathematica [19]. It is based on the concept of term
rewriting [2] and uses a small but reasonably efficient rewrite
engine. Expression simplification and symbolic differentia-
tion are implemented as sets of rewrite rules for this rewrite
engine. The basic rules are straightforward; however, the
presence of vectors and matrices introduce a few compli-
cations and require a careful formalization. In addition,
AutoBayes contains a rewrite system which implements a
domain-specific refinement of the standard sign abstraction
where numbers are not only abstracted into pos and neg but
also into small (i.e., |x |< 1) and large. AutoBayes then
uses a relatively simple symbolic equation solver built on top
of these rewrite systems. This handles only low-order poly-
nomials (i.e., linear, quadratic, and simple cubic). However,
it also shifts and normalizes exponents, recognizes multiple
roots and bi-quadratic forms, and tries to find polynomial
factors, and handles expressions in x and (1 − x) which are
common in statistical applications.

Backend. The code constructed by schema instantiation
and composition is represented in an imperative interme-
diate language. This is essentially a “sanitized” subset of
C (e.g., no pointers), which is extended by a number of
domain-specific constructs like vector and matrix operations,
finite sums, and convergence-loops. Since straightforward
schema application can produce suboptimal code, AutoBayes

interleaves synthesis and advanced code optimization (cf.
[16] for an overview). Schemas can explicitly trigger ag-
gressive large-scale optimizations like code motion, common
sub-expression elimination, and memoization which can take
advantage of information from the model and the synthesis
process. Traditional low-level optimizations like constant
propagation or loop fusion, however, are left to the compiler.
In a final step, AutoBayes translates the intermediate code
into code tailored for a specific run-time environment. Cur-
rently, AutoBayes includes code generators for the Octave
and Matlab environments; it can also produce stand-alone
C and Modula-2 code.

5. EXPERIMENTS AND RESULTS
5.1 Sloan Digital Sky Survey
Mapping the large scale structure of the universe is nec-
essary in order to better constrain formation scenarios of
structures of all scales (from galaxies to large walls) in the
universe. To this end, measuring the ”distances” and x-y
projections on the sky of the largest number of objects pos-

sible is necessary. Thus far it has been difficult to use only
broad band color data to accurately map mass on a broad
range of scales. Astronomers have only been successful in
doing this on small numbers of spectroscopically measured
galaxies (of order 105). If the errors on what we call ”Photo-
metric Redshifts” can be driven sufficiently low enough we
can, for the first time, use a sample of order 108. This two
orders of magnitude improvment could have very significant
implications for contemporary theories of the Universe.

SDSS [?] photometry (five broad band filters/colors ugriz)
with calculated accurate photometric redshifts is our goal.
For example, the SDSS will have 106 (to date ≈ 125, 000
measured) galaxy redshifts. The next largest survey has ap-
proximately 220,000. All of the rest of the redshifts surveys
do not add up to that of the 2dFGRS alone. SDSS photome-
try will eventually consist of 108 objects (53×106 currently).
Again, no survey approaches this quantity of data. Another
survey is closest with 400 million objects, but only two ”col-
ors” are measured, it is spread across entire sky, is a much
shallower survey and consists mostly of stars within our own
galaxy, rather than external galaxies as in the SDSS.

The results from the latest methods used to attack the Pho-
tometric Redshifts in the SDSS range from root mean squared
errors from 0.034 - 0.066 and show considerable variability
due to sampling. To be able to map the filamentary struc-
tures in the Universe we need a significant improvement in
the root mean square error of the competing methods.
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Figure 2: Example clustering of one small section
of the sky using spectroscopically determined red-
shifts. Crosses indicate field-galaxies, i.e., those that
are not on filaments. Dots indicate galaxies that are
on filaments.

The next sections describe the preparatory work that we
performed with the Gaussian mixture models. These runs
helped us choose the number of clusters and the priors to
include when we build the kernel matrix using Equation (3).
The resulting kernel matrix is then supplied to a Support
Vector Machine for classification of galaxies to distinguish
high from low redshift galaxies, and regression, to predict or
estimate the actual redshift.



5.2Choosing Parameters for the Mixture Model
In a first set of experiments, clustering using AutoBayes

generated code was used. Our model is a multi-variate mix-
ture of Gaussians. Figure 1 shows the entire AutoBayes

specification. We ran this model and varied the desired num-
ber of classes from 3 to 30. Because our EM algorithm uses a
randomized initialization, 10 independent runs were carried
out. Figure 3 shows the log-likelihood for the given parame-
ters after clustering, the solid line shows its mean. From this
graph it is obvious that the initialization plays an important
role as it strongly influences the result. From this figure one
can also deduce that the best number of clusters for the given
data set is around 12. For larger numbers of clusters, the
log-likelihood does not change much, indicating that the in-
creased model complexity does not appreciably increase the
fit of the model. For each of the clustering runs, EM needed
between 5 and 55 iterations, with mean of 14.2 iterations to
converge.

-340000

-320000

-300000

-280000

-260000

-240000

-220000

-200000

0 5 10 15 20 25

-lo
gl

ik
el

ih
oo

d

number of classes

Figure 3: Log-likelihood of a Gaussian mixture
model with no priors as a function of the number
of components in the model. Each box corresponds
to one run. Notice that there is substantial varia-
tion in the terminal value of the likelihood function,
which is due to the well-known sensitivity of the EM
algorithm to initial conditions.

The redshift of a galaxy has a strong connection on how its
spectral features are mapped onto the 5 spectral bands given
by the symbols (u, g, r, i, and z). If, for example, a signifi-
cant spectral feature of a near galaxy shows up in band r, the
corresponding feature of a similar, but distant galaxy would
be shifted toward the next band, i. Thus, we can assume
that the data points in the different bands are not uncor-
related (as in the previous model), but that they have cor-
relations with the neighboring band. This extended model,
which has a band covariance matrix, includes a simple trans-
formation of the data: the new clustering algorithm gets the
original 5 bands, but also the difference signal between adja-
cent bands: u− g, g− r, r− i, i− z. Figure shows the results
of this clustering in terms of the likelihood function. The
likelihood function shows similar variation, and when penal-
ized for the additional model complexity, also indicates that
the correct number of clusters is around 12.

In the next experiment, a subset of our training data set was
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Figure 4: Log-likelihood over number of components
(shifted case)

used. It contained all data points, for which the measured
red-shift was larger that 0.3. This data set contains 4530
of the 52744 data points. A similar clustering experiment
(with the above AutoBayes model) revealed that the best
number of clusters for distant galaxies is much lower (around
5). Figure 5 illustrates this.
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Figure 5: Log-likelihood over number of compo-
nents; distant galaxies only

5.3 Incorporating Prior Knowledge
In order to incorporate prior information in the AutoBayes

model, we specified conjugate priors on the mean values µ.
The only changes of the specification are the declarations
of the prior parameters µ0 and κ0, their relationship to the
mean, and a new optimization goal:

double mu_0(0..D-1, 0..C-1).
double kappa_0(0..D-1, 0..C-1).
mu(_i,_j) ~ gauss(mu_0(_i,_j),

sqrt(sigma(_i,_j))*kappa_0(_i,_j)).

max pr({mu, x} | { sigma, phi }) wrt {phi, mu, sigma}.



The rest of the specification remains unchanged. AutoBayes

automatically instantiates the appropriate EM algorithm
with a highly complex log-likelihood function given in Sec-
tion 2. A visual investigation of the data displayed in Fig-
ure 6 indicated that cluster centers need to be placed in
spectral regions which would model high redshift galaxies.
We placed 5 clusters, based on the results from the clus-
tering of distant galaxies only, at the spectroscopic inputs
corresponding to those galaxies. Those clusters had pri-
ors associated with them on the r spectral band, since that
has maximum correlation with the redshift. The remaining
input dimensions had no priors. Furthermore, we did not
place priors on the mixture weights or the covariance matri-
ces. Non-isotropic diagonal covariance matrices were used in
this study. With this model, we trained 20 mixture models
to build the Mixture Density Mercer Kernel.
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Figure 6: This figure shows a multivariate scatter
plot between the bands (u, g, r, i, z) and the redshift.
Galaxies which are farther away, i.e., those with
higher redshift have lower spectral energy in the
band, as expected. Nearby galaxies have high spec-
tral content. This information was used to set priors
in subsequent models.

5.4 Evaluation of Results
The Mixture Density Mercer Kernel was built using proba-
bilistic models that included priors as well as those without
priors on a training set of 1500 galaxies and a test set of 5000
galaxies. We first submitted the MDMK along with the 5000
test galaxies to a single CART decision tree module avail-
able in Matlab. The resulting confusion matrix indicated
that only 77% of the distant galaxies (those with a redshift
greater that 0.3) were classified correctly. Thus, the model
had a true positive rate of 77%. Using the Mixture Density
Mercer Kernel, this rate was dramatically improved to ap-
proximately 93% using the same training and test data. The
tree and the MDMK classified approximately 99% and 97%
of the nearby galaxies correctly. This however, is an easy
problem since nearby galaxies may have high spectral energy
content, whereas distant galaxies never have high spectral
content. It is much more difficult to distinguish far galaxies
from those that are dim and near.

The Mixture Density Mercer Kernel performed significantly
better than the benchmark classifier that we used regardless
of the use of prior information. It turned out that in this
application, prior information only improved the results of
the false negative rate by about 1%, which is within the
variation due to the model uncertainty. Subsequent research
into the specific location of the priors and the shape of the
covariance matrices will be performed.

In order to further test the quality of the SVM based on
Mixture Density Mercer Kernels, we built an ensemble of 20
bagged trees that were built on bootstrap replicates drawn
from the training set. For this scenario, we found that the
true positive rate increased from 77% for the single tree to
86%. The true negative rate remained the same. However
the true positive rate, although appreciably higher, was still
lower than the result for the Mixture Density Mercer Kernel
SVM.

The next experiment that we performed increased the train-
ing population for the bagged trees from the original sce-
nario, where we were drawing bootstrap samples from 1500
points to 45,000 points, representing a 30 fold increase in the
amount of training data. This dramatic increase in training
data helped the bagged trees true positive rate, bringing it
to approximately 91%, still 2% lower than the result for the
MDMK SVM, which was built on a data set 30 times smaller
in size. Note that for all experiments described here, we re-
port the best results out of several runs for all models.

The significant increase in classification accuracy can be at-
tributed to the structure induced in the kernel matrix by the
mixture modelling process. We computed a kernel matrix
using the procedure outlined in this paper, and evaluated the
matrix entries using a data set that was sorted in increas-
ing order of redshift. The resulting matrix clearly shows
that high redshift galaxies are generally not confused with
lower redshift galaxies by the model. There are two notable
exceptions in the matrix. Confusion would be indicated by
large off diagonal elements in the matrix. Note that we have
displayed the kernel matrix in sorted order only for illustra-
tive purposes. The support vector machine’s classification
accuracy is independent of the order in which the data is
presented; the underlying mathematics is invariant subject
to the permutation of the data and the corresponding kernel
values.

We ran the Mixture Density Mercer Kernels in a support
vector regression machine in order to directly estimate red-
shift. For this problem, regardless of the use of priors, we
were able to obtain a root mean squared error of approxi-
mately 0.057 on test data, which is comparable to the er-
ror rates of published methods on large samples. This data
shows a great deal of sample-to-sample variability. A CART
regression tree realized a root mean squared error of approx-
imately 0.045, which is about 10% better than the MDMK
described here. These results, however, are not surprising
since the MDMK is built to have high performance on clas-
sification tasks.

6. CONCLUSIONS
Our results indicate that for a difficult, real-world classifi-
cation task, the Mixture Density Mercer Kernel (MDMK)



Figure 7: This figure illustrates the reason that the
Mixture Density Mercer Kernel performs so well on
the classification task of identifying nearby galaxies
from those that are far away. Galaxies that are far
away are bunched together in the lower right hand
corner of the matrix.

performs better 16% better than a decision tree. We have
developed a method to incorporate prior knowledge into
the model which is a novel approach to learning kernels di-
rectly from data. The MDMK with priors was built with
AutoBayes, which automatically generates code to model
mixture densities with prior information. The AutoBayes

system generates code to model the mixture density based
on high-level specifications, automatically instantiates the
associated EM algorithm schema, performs all necessary op-
timizations, and generates the symbolic solution along with
the likelihood function.

We plan to further investigate the use of prior information
in the Mixture Density Mercer Kernel framework on other
real world and synthetic problems. The dramatic increase
in classification accuracy that is exhibited here is most likely
due to the way the kernel function is constructed. The use
of prior information may prove to be very useful as new
understandings about the data generating process and the
associate physics arise.

The results also indicate that the Mixture Density Mercer
Kernel can be an excellent representation for classification
problems using very small samples of data. In resource con-
strained environments, where CPU, RAM, or other com-
putational power is constrained, this kernel may have util-
ity. We plan to explore this avenue further to see how the
MDMK behaves under constrained conditions. We also plan
to generalize the MDMK to multiclass problems.
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